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« Summary of sequencing techniques
 Data quality assessing and filtering
* Mapping the short reads

* Detection of SNPs

* Detection of SVs

* Detection of CNVs
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[llumina sequencing

Several samples can be loaded onto the eight-lane flow cell for simultane-

ous analysis on an lllumina Sequencing System
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The enzyme incorporates nucleotides to build double-stranded bridge
the solid-phase substrate.

Technology Spotlight: lllumina® Sequencing

Denaturation leaves single-stranded templates anchored to the substrate.
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Platform lllumina MiSeq lon Torrent PGM PacBio RS lllumina GAlIx Illumina HiSeq 2000
Instrument Cost* 5128 K S80 K** 5695 K 5256 K 5654 K
Sequence yield per run 1.5-2Gh 20-50 Mb on 314 chip, 100 Mb 30Gh 600Gh
100-200 Mb on 316 chip,
1Gb on 318 chip
Sequencing cost per Gb* 5502 $1000 (318 chip) 52000 5148 541
Run Time 27 hours** 2 hours 2 hours 10 days 11 days
Reported Accuracy Mostly > Q30 Mostly Q20 <Q10 Mostly > Q30 Mostly > Q30
Observed Raw Error Rate 0.80 % 1.71 % 1286 % 0.76 % 0.26 %
Read length up to 150 bases ~200 bases Average 1500 bases™™™** up to 150 bases up to 150 bases
(C1 chemistry)

Paired reads Yes Yes MNo Yes Yes
Insert size up to 700 bases up to 250 bases up to 10 kb up to 700 bases up to 700 bases
Typical DNA requirements  50-1000 ng 100-1000 ng ~1 Hg 50-1000 ng 50-1000 ng

Quail, M. A., M. Smith, et al. (2012). "A tale of three next generation

sequencing platforms: comparison of lon Torrent, Pacific Biosciences

and lllumina MiSeq sequencers." BMC Genomics 13: 341.
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maiescach  Flowchart of sequencing analysis

Image analysis and base calling

\

Read mapping

| Sequencing data

e e e e ]

Multi-sample calling Single-sample calling |

Promote candidate SNP De novo
set and genotype calls using assemb |y
non-linkage-based, multi-
sample analysis

Resequencing

| Refine candidate SNPset !
' and genotype calling using |

linkage-based analysis o
Whole genome [ Regional/partial Target region
assembly assembly o resequencing RAD/GBS
resequencing

i SNP ﬁltf:rinﬂ and SNP or EenuEEf: Huulisz score recalibration 1

m S. Paul, et al. (2011). "Genotype and SNP calllng from
next-generation sequencing data." Nat Rev Genet 12(6): 443-451.
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Different genomic variations
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* Find the sequenced read’s placement in
reference genome

 Calculate the coverage and depth distribution
of the sequenced reads

« Sequencing quality evaluation
 Important for variation detection
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Smith-Waterman
* Modified to do local alignment

Needleman-Wunsch

Global alignment algorithm
An example: align COELACANTH and
PELICAN

Scoring scheme: +1 if letters match, -1 for
mismatches, -1 for gaps

COELACANTH

P-ELICAN--

BLAST

Three heuristic layers: seeding, extension,
and evaluation

Seeding — identify where to start alignment
Extension — extending alignment from
seeds

Evaluation.— Determine which alignments
are statistically significant- =
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Differences between traditional and next-generation
sequencing technology

— reads length

— data capacity
Algorithm change to meet the data characteristics of the
sequencing technology

— traditional aligner: global or local alignment; scoring
matrix; dynamic programming and trace-back

— Next-Gen aligner: Indexing & Bitwise operation
 Does blastall/blat still work?

 Short Oligonucleotide Alignment/Analysis Package

- 77—/\
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Index the genome

Input

GATATACACHA

Repeated

segments
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3G research

« Comparing to BLAST, BLAT, short reads
aligner applied looking-up method.

* |Index of the reference were made In order to
help the process of looking-up.

» Seed were first looked up by using index and
then sequences were extended.

Reference 000000 1

Index —7/—> e

Reads

14
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 Fast and efficient

* Mode of pair-end mapping

« Permit gaps within alignments
* Trim of reads permitted

Program Time consumed (5) Reads aligned (%)
blastn (—=F F =W 11) 165 780 as47

blastn (—F F —W 15) 150 660 82466

Blat (—tileSize = &) 22032 85.07

Eland 166 ad.53

Mag 458 ad. 3y

Soap 134 RE.46

Soap iterative 161 90.9

Soap iterative 4 gapped 486 91.15

o r—//\
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Indexing

— Split read into parts, which used to anchor the exact matching
region in the reference, excluding much of the unwanted region.

2way-BWT (Burrows-Wheeler transform) provide a
excellent solution for the computing complexity
— Memory effective (~7G memory need for 3G genome).

— Fast indexing (2 minutes to finish 1M 35bp single end
alignment).

Thread Parallel Computing
— Make fully use of process and save time.

Bitwise operation

— Encode each base into 2 binary bits, and use exclusive-or to
check if two bases are the same.



il Flowchart of mapping

Pre-build index files

Branching Limited
Reference

(Mismatches)

BWT Reference D
Suffix Array

. Search queries

__________________________________
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* Burrows-Wheeler Alignment tool (BWA), the
read alignment package that is based on

backward search with Burrows-Wheeler
Transform (BWT);

* Allowing mismatches and gaps;

« BWAis ~10-20X faster than MAQ, while
achieving similar accuracy;

 BWA outputs alignment in the SAM format

* Variant calling can be achieved by SAMtools
software package
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CPU time and RAM

CPU-TIME (min) RAM (G)
Aligners

35 75 90 101bp 35 75 90 101bp

BWA 50 14 13 13 3.2 3.2 3.2 3.1

Bowtie 5 4 4 4 2.9 2.9 2.9 2.9
BFAST 300 360 240 360 16.75 16.75 16.75 16.75

MAQ 300 180 150 132 0.8 0.6 0.6 0.6

Mosaik 122 50 51 60 19 19 19 19

mrFAST 900 284 273 231 8 2 1.7 1.5

Novoalign 149 18 20 21 5.5 55 5.5 55

SOAP2 9 6 7 9 5.6 5.6 5.6 5.6

Stampy 206 109 60 59 2.7 2.7 2.7 2.7

19
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BFAST _—
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(%) of Reads

B Correct O Incorrect B Unmap




X B X5 -
ceeadrosoarch Correctness of mapping

MAQ
BFAST
Bowtie

BWA

SOAP2
Stampy
Novoalign
MmrFAST

Mosaik

86 88 90 92 94 96 98 100

(%) of Reads
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* Short reads mapping need specific aligners

* Many aligners are available and there are
different features.

* No best aligner exists, and most of them are
acceptable.

* Mapping is important in variation detection.
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* Well-studied variation
* Better representing demographic history
* Method of detection is relatively mature

* Provides more information for follow-up
studies

* Detect SNPs in individuals
* Detect SNPs in population



et escarch SOAPsnp to detect SNPs

* SOAPsnp was developed for consensus calling
and SNP detection based on the Solexa
sequencing technology.

* SOAPsnp takes Bayes's theorem as statistic
model for SNP calling, it considers:

— Sequencing quality

— Likelihood calculation based on observed data

— Experiment factors TeACGGTATGET
— Prior probability S o

— Alignment uniqueness and accuracy ACGAGAT

. . iy ACGAGAT

— Using dbSNP as prior probability ACGAGAT
ACGGGAT

ACGAGAT

T ——

e
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. [ Reference: G 1
Sequencing
reads
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Map reads onto reference 10 Possible genotypes for diploid

genome ‘
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* SNP identification can be inferred by counting mismatch
numbers.

* But, sequencing quality is important for distinguishing
sequencing error from SNP, especially for Solexa
sequencing.
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P(T;)P(D|T;)

S
X P(TYP(DITY

P(T;|D)=

* D:is the observed data in alignment. Diploid Ti contain 10 types:
* Prior(g): prior probability of a given AA,CC,GG,TT,AC,AG,AT,CG,CT,GT;
genotypes
* P(D|x): conditional probability to get the
observed data D of a given genotype P((Base,quality)|Ti) =
Table 1. Prior probability of genotypes of a diploid genome P((Base’qua]ity) |Ti]_) /2
A ¢ G T + P((Base,quality)|Ti2)

A 333x107* 111 x107 667 x10°% 1.1 x 1077 /2
C 8.33 x 10°° 1.67 x 10°* 278 x 1078
G 0.9985 1.67 x 10°*
T 833 x 103

Assuming that the reference allele is G, the homozygous SNP rate is P(DlTl) ~— HP((Base’ quahtY) ITI)

0.0005, the heterozygous SNP rate is 0.001, and the ratio of transitions 28
versus transversions is 4.
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* By comparing the reference allele and the consensus
genotype with maximum Bayesian likelihood, decisions of
SNP status are made.

* But this is only the candidate SNPs, the accuracy is not
reliable, especially when the mapped reads depth is low.

* In addition, we used some other measures to get confident
SNPs, such as the minimum supporting reads number for
each allele, exclude SNP predictions on repeat regions, and
the rank-sum test for heterozygous SNP.

- 77—/\
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 MAQ provides modules to identify SNPs. Error rates were
calculated at each position thus SNPs were identified.

A Accuracy of variant calling (SE alignment) B Accuracy of variant calling (PE alignment) C Accuracy of k-allele method (base err: 0.003)
70 70 50
filtered region filtered region —— FP 3-allele
60 ; substitution FP —=— 60 i substitution FP —=— FN 3-allele —=—
substitution FN —=— substitution FN —=— 40 FP 4-allele —=
50 50 indel FP FN 4-allele
o indel FN : FP 5-allele
& 40 40 : 30 FN 5-allele
g
g 30 30 20
2 ‘
20, figpgmosi s hrrsssgisd 20
= B n 10
10 10 R s s s S M SO
; e
0 et : H

: 0 i 0 x
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Sequencing depth Sequencing depth Sequencing depth

* Samtools, using sam/bam files, identifies SNPs in
individual or populations.

30



et Ll Detect SNPs at different depth

SNP Coverage
100 - ——
-
s 80
Py
%’360-
d
S 40}
e
% 20| Q20 ==~
2 Q30 ——
R s
0% 4 6 8§ 10 12 14 16 18 20

Depth (x)

In population studies, sequencing depth of each
individual is always low. Then, how can we detect
SNPs?

- 77//\
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* Sequencing in population
— Several individuals sequenced

— Sequencing depth of each individual is relatively low
(0.1-20X).
— Total depth is high, several hundred times.
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Detect SNPs in population

3G research
Sequencing S:?;r:ee Identified Studv DUrDOSe
depth °rag SNP ratio y purp
ratio
Rough population survey, infer population
Low (1-3X) 50%-80% 30%-50% .
structure, phylogeny, and selection.
Middle (6- Whole population sequencing, suitable for
10X) 90%-99% 70%-90% further applications, such as molecular

High (20-40X)

99.9%~100
%

95%-99%

inbreeding, and functional genomics.

Complete map (de novo assembly) for
each subspecies, line, or individual,
suitable for all kinds of future
applications.




2 Oy N e .
e s GLFmulti

* To detect SNPs in population (applied in
silkworm paper)

e Using SOAP to align sequences from each
individual to the reference.

Mapping

e Using SOAPsnp to determine the
likelihood of genotypes at each position in
S0V each individual.

e Integrate the likelihood of each individual
at each position, then apply MLE to
estimate the allele frequency.

\ — 34
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* Frequency at each site with the maximum
likelihood is given.

* Copy number, sequencing depth, quality score
and minor allele count are integrated into one
score.
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 SNPs were confidential, but SNPs at low
frequency were underestimated.

35% -
£
30% - s
E
25% - 2
20% - g
]
15% - E
g
10% - —
=
5% -
0% - 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Minor allele frequency
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* To detect SNPs in population (applied in
Tibetan paper)

e Using SOAP to align sequences from each
individual to the reference.

Mapping

e Using SOAPsnp to determine the
likelihood of genotypes at each position in
S10:V500)  each individual.

e (Calculate the likelihood of allele frequency
at each position.
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1. Likelihood of different allele frequency.

I O O N N R E
P1 P2 : . =

Individuall PO

Individual2 PO*PO(2) P1*P0O(2)+PO*P  P2*PO(2)+PO*P2(0)+P1  P1*P2(2)+P2*P  P2*P2(
1(2) *P1(2) 1(0) 2)

2. Prior probability of different allele

frequency. .,

30% -
25% -
20% -
15% -
10% -
5% A

0% -




e realSFS

* Detect SNPs at low depth of each individual
(lowest 0.4X depth).

* Relatively higher false positive ratio.
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sare Other software to detect SNPs

* GATK: a widely used software/pipeline to
detect variations, especially for human
population
(http://www.broadinstitute.org/gsa/wiki/ind
ex.php/Main_Page)

 SHORE: a pipeline used in 1000 genome
project of Arabidopsis
(http://sourceforge.net/apps/mediawiki/shor
e/index.php?title=SHORE_Documentation)

,7//\
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The map / reduce framework Map/Reduce over the genome
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equivaleat positions o
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covered metadata)

The GenomeAnalysisToolkit (GATK) enabling rapid

development of efficient and robust analysis tools

L3

GenomeAnalysisToolkit

infrastructure

—

}
Analysis
tool

Provided by framework Implemented by user

Manages basic program infrastructure

Libraries for accessing data in many formats
and conversion to standard data structures

Automatic threading, distributed computing,
and other high-performance features

Provides structured and efficient access to
reads, reference bases, and metadata

Analysis-specific calculation using data
presented to it by traversal engine

Relies on the engine to manage the data
interaction to focus on analysis calculation




i 2L SHORE

 SHORE is a data analysis and management
application for short DNA/RNA reads produced by
the various contemporary sequencing platforms.

 SHORE is designed to support different sequencing
applications including genomic re-sequencing, ChIP-
Seq, mRNA-Seq, sRNA-Seq and BS-seq.

 SHORE was developed for applications
in Arabidopsis thalianabut has been successfully
used with other genomes, including human,
mouse, D. melanogaster, C. elegans, maize and
several bacterial genomes.

- 77—/\
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Eroresearc Summary of SNP detection

* Different methods can be applied in SNP detection in single
individual.

* The main problem to cope with is the sequencing errors
which would result in false positive.

* The variation calling would also depend a lot on the
mapping result.

* Experimental validation is necessary.
* Detect SNPs in individual require higher depth.

* Detect SNPs in population can detect SNPs at lower
individual depth.

 Statistic method is usually applied in SNP calling to prevent
influence of sequencing errors.

* Different statistic models show different detection power.

- 77—/\
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* After mapping, if the mapping permits gaps, those
alignments with gaps can be the candidate for indels.
* In SOAPindel sequencing quality and mapping result

were combined to deduce the probability of being an
indel.



st Detection of indel by SOAPindel

Reference | —

Mapped reads —— e

Homozygous Heterozygous —
deletion deletion Homozygous Heterozygous
insertion insertion
,,,</,’/\7 =SS I—

ik \ P TS,
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* Dindel: program for calling small indels from
short-read sequence data

— Extracts all indels from the read-alignments in the BAM file
— Candidate InDels grouped into windows

— For each window, Dindel will generate candidate haplotypes from
the candidate indels and realign

— Interpreting the output from Dindel
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* Mainly there are three kinds of methods to
detect structural variations:

— Local de novo assembly
— Pair end mapping
— Split reads

* The SV detection based on assembly is believed
to be more accurate.
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LLocal de novo assem

y

1. Assemble pair-end reads into scaffold.

2. Align the scaffold to reference genome.

Read Depth

high _

ANV WAL AT AW cmr.'h*(yw AN SNV WAAAANNN AN

low

Reference i

Scaffold |

high
O eV A VLI A g P A WA A AN A WA AN A A NV AIM A AR

low

high

Read Depth | W Al W AAL Y LA A A o A AL, Pair-End

Tow MWWWW WMWWWVWMMWM Single-End
Insertion

,,,7—/,’/\ '

Read Depth

Reference

Scaffold

Read Depth

Pair-End
Single-End
high
AL AP ARAL AWV A W AU AAN S AT A
low | J
PO e AV A s AR AL AR A WA SIS A AN AR LA AN
low
high ¢ - a
A AL AL VWA ol AR S N Yy pair-End

MMMMWWWWWMMMWWWWMW Single-End
Deletion
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SOAPsv

Workflow of SOAPsv:

Paired-End de novo

libraires || assembly F

Indel &
inversion 7
calling I

SV mining

SV scores

higher than

Scaffolding

—

complexity
analysis

Single/Pair
ratio and
read depth

threshold?

Confidence
score

Potential

SV
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E&&lﬂ%ﬁtructure variants can be detected:

o

QZSLAW&J\W MM}”\ M“WW h o MWWMBW

156,734 ||| | _ 178,025

Ref.
" Insertion ™ Deletion ™ Inversion ™ Repeats
Output format:
Insertion scaffoldd1829 231 573 chrél 4023036 4023036 342 CAAACTATTCTTAATTAATAGATAAACTGCCATGCCGCAT
Insertion scaffold1687 1979 2129 chré3 208248959 20248959 158 CTAGAACCCCCGCGGGGGCAGACC
Deletion scaffold28683 35 35 chréd 33346626 33346656 30 GTTAAGGAAATGATTTATTG
Deletion scaffold39865 797 797 chréé 14536368 14536526 158 TGAACCAGAGCTTGCACATC

(#Type, scaffold, start, end, refChr, start, end, length, sequence)

Reference:
Li, Y., Zheng, H., Luo, R., Wu, H., Zhu, H,, Li, R,, ... & Wang, J. (2011). Structural variation in two human
genomesmﬁmmde—resolu@bywhehfenomede novo assembly. Nature e

biotechnology, 29(8), 723-730. \ -
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1. Map the reads to the reference genome.
2. Detect structure variants by discordant reads.

a b c
Basic insertion Basic deletion Basic inversion
Donor& /Y\.- /\_ /\_
h | & \X_/_
d e f -
Linking Linked insertion Everted duplication

w w S

B J—d
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Workflow of BreakDancer:

d Mapping Detection
parameters parameters
(i) Genome- .
Paired-end : (ii) Search for
e I e I S e
g regions
read pairs
(iv) Structural y
Structural (v) Compute variation position, _ (iii) Identify
Varlants | confidence |<— type, size and <¢— interconnected
scores number of anomalous clusters
mapped read pairs

——— — -

Intrachromosomal
translocation

~— Deletion Insertion Inversion

\

P TS,

Interchromosomal

translocation
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erformance of BreakDancer

X TPR BDMax Q30

EXER5R P

¥ FPR BDMax Q30
70 | * TPR analytic
TPR detectable
+ TPR BDMini ~ . "
60 | =+ FPR BDMini o
s -a— TPR BD all
2 50 FPR BD all
o
g 5
40
o X
a 30 e <.
20
10 e,
\ — s 2 — — —r i —
i LI P el S
10 20 30 40 50 60 70 80 90 100
Physical coverage (fold)

1 62767 10+8- 1 63126 B+18- INS -13 36 10 NA|18 1.80 BreakDancerMini-©.8.1 gl@
1 59257 5+1- 1 60164 @+5- DEL 862 99 5 nA|2:tB|1 ©.56 BreakDancerMax-98.8.1 c4
1 10000 10+9- 2 20000 7+10- CTX -296 99 19 tB|10 1.80 BreakDancerMax-9.0.1 t1

(#chromosome, position, orientation, chromosome, position, orientation, type, length, score ...)

Reference:

Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S,, ... & Mardis, E. R. (2009).

BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nature methods, 6(9),

677-681.
53



o Split reads

1. Map the reads to reference genome.

Select those paired reads that mapped with indels or of
which only one end can be mapped.

3. Uses the mapped reads to determine the anchor point on
the reference genome and the direction of the unmapped

a b C
- - - —_— E—— —
Reference Reference — 1. Reference - .
Sample Sample > - - Sample » -
—_— - - -
d e f
—_— - e : —-

Reference Reference — - Reference _.‘_-
Sample Sample » - - Sample > -
- — —

4’_.‘_—
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Workflow of Pindel:

Alignment BAM file Alignment BAM-file
generated by BWA generated by other aligners
samtools
Run bamZ2pindel
create BAM deprecated) Alignment SAM-file
config file
(recommended)
samZ2pindel.cpp
BAM config file Pindel text input file

Run pindel

Deletions file  ghort insertions file ~ Long insertions file Inversions file  Tandem duplications file  breakpoints file
(D) (sh )] (_INV) (_TD) (_BP)

—~—L



—sklﬂlEliﬂatBﬁ LINEs can be detected by Pindel:

BGI o research

(@) 100000 (b) 100000

10000 | 10000

> 1000 & 1000 l
c
@ @ .
= =2 >
o o
o o
L 100 O 100 LINEs
10 10 ."_‘
| ‘ 4
5 10 100 1000 10000 1 10 100 1000 10000
O f size of deletion size of deletion
9 D 43 NT & "" ChrID chrél BF 26563 26687 BP_Pange 26563 26687 Supports 9 9 + 9
AGGTCATCGTAGATGCCATCAT CAACA GG TACCACCGTCCAATTCCCAATTCCTTTCAGTTGCGCACTTCAATTGTCCAATTCACTTTTTTTEtcaat<33>ctgtcCAATCACCCCCACC
TTCACTTTTTTT CAATCACCCTCACC
TCCAATTCACTTTTTTT CAATCACCCTCACC
TCAATTGTCCAATTCACTTTTTTT CAATCACCCTCACC
TTGCGCACTTCAATTGTCCAATTCACTTTTTTT CAATCACCCTCACC
CCTTTCAGTTGCGCACTTCAATTGTCCAATTCACTTTTTTT CAATCACCCTCACC
TTCCTTTCAGTTGCGCACTTCAATTGTCCAATTCACTTTTTTT CAATCACCCTCACC

(#index, type, length, insertion length, chrID, border of event, range of unclear breakpoint, support number)

Reference:
Ye, K., Schulz, M. H., Long, Q., Apweiler, R., & Ning, Z. (2009). Pindel: a pattern growth approach to detect break
points of large deletions and medium sized-insertions.from-paired-end short reads. Bioinformatics,25(21), 2865~

2871.
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Comparison
Tools ___[sOAPsv ____|BreakDancer __|Pindel

Main detectable 1 bp-50 kbp >10bp 1bp-30kbp
length range

Detectable SV types

Insertions Yes Yes Yes
Deletions Yes Yes Yes
Inversions Yes Yes Yes
Complex Yes Yes No
Precision of Single base A short ambiguous Single base
breakpoints range

Genotypes of SV Yes No Yes

events

False-positive rate in 1.20% 9.1-10.3% <2%
simulated data

False-negative ratein  9.60% 26—32% ~20%
simulated data

*Reference: Li, Y., Zheng, H., Luo, R., Wu, H.,-Zhu, Hs;-kiyRyea& Wang, J. (2011). Structural variation in two

human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nature

biotechnology, 29(8), 723-730. (Table2)

ALE 17
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The CNV detection
* Depth of Coverage (DOC):
— Number of reads in a region

e Uniform depth distribution
 Biased for GC etc.

mapping

* Paired End Mapping (PEM):
— Proper pairing when

IS

A

" -
Mapped ru;:l:‘\ﬁ -------- ol
* Inversions/Translocations
* Split Reads (SR)
— The unaligned reads

* Limit by insert sizes

Clustered read pairs
¢ Read depth

lllﬂ{ﬁ; -

£ Split read
D Assembly-based

s Euome regions  m—m

E  Combinatorial approach
* Pinpoint the location of CNV

* Assembly based (AS)

Zhao et al. BMC Bioinformatics 2013, 14(Suppl 11):51

58
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aarecaren  SUMMAary of CNV detect tools

Method URL Language Input Comments

PEM-based

BreakDancer httpe//breakdancer sourceforgenet/ Perl, C+=+  Alignment files Predicting insetions, deletions, inversions, inter- and intra-chromosomal ranslocations

PEMer httpy//fsvgersteinlaborg/ pemer Perl, FASTA Using simulation-based error maodels to call SVs

Pythaon

VariationHunter  httpy//fcompbiocs sfuca’strvarhtm C DNVET? Deteding inserticns, deletions and inversions

commonlAW  httpfcompbiocs sfucalstrvarhtm CH Alignment files M-,Eg_;li[llg rmultiple samples simultanecusly to gain accurte SV using maximum parsimaony
miode

GASY http//codegooglecom/pigasvy lava Bam A geometric approach for classification and comparison of structural variants

Spanner A M A M/A Using PEM to detect tandem duplications

SR-based

AGE httpe//fsvgersteinlaborg/age G+ FASTA A dynamic-programming algorithm using optimal alignments with gap excision to detect
breakpoints

Pindel httpy/ fewene blac uk/~kye/pindel/ C++ BAM /FASTO Using a pattern growth approach to identify breakpoints of various SVs

SLOFE http/fvww-genepimed.utahedu/suppl/ C++ SAMFASTY Lecating SVs from targeted sequencing data

SLOPE MAQ®

SRIC A MAA BLAT ocutput Calibrating3V calling using realistic error models

AS-based

Mag nolya httpe/fsourceforgenet/projects/magnoelya/  Python FASTA Cdkljl(ljrlzl] CHV from co-assembled genomes and estimating copy number with Poisson mixture
mode

Cortex httpe/feortexassembiler sourceforgensat/ C FASTOYFASTA Using alignment of de nowvo assembled genome to build de Bruin graph to detect S\s

assemnbler

TIGRA-SV httpe/fgmugenomewustledu/tigrasv’ C SV cals™ + BAM Lol assembly of S\s using the iterative graph routing assermbly (TIGRA) algorithm

Method URL Language Input Combination

MovelSeq httpn/ fcompbio.cs sfucafstrarhtm C FASTA/SAM PEM+AS

HYDRA httpy feode googlecom,/plhydra-sef Python Discordant paired-end mappings PEM+AS

CMver httpn/ feom pbio.cs toronto.eduCNVer Perl, C++ BAM/aligned positions PEM+RD

GASVPro httpy/ foode googlecom/plgasy/ CH BAM PEM=+RD

Genome STRIP httpe/ Aerwin broadinstitute org/softwars//genomestrip/genomestrip Java, R BAM PEMERD

SvDetect httpy/fsvdetect sourcelorgenet Perl SAM/BAM/ELAND PEM+RD

inGAP-sv httpe/fingapsourcefonge net/ Java SAM PEMERD

Shseq httpe/ ferwin 2ngruconnedu/~iz08001 svseg html C FASTO/BAM FEM+5R

MNord et al MN/A MN/A MN/A RD+5R
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* CNVer http://compbio.cs.toronto.edu/CNVer/
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http://compbio.cs.toronto.edu/CNVer/

il LU Notes about CNV detection

* Repeat regions would have great impact.

* Mapping depth should be carefully inspected
especially when the pair-end mapping was done.

* It is always difficult to give the actual copy
numbers.
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mareseacn  SUMmMmary of variation detection

 Different models are available in SNP calling of a
single individual, and good methods should take
care of both sequencing and mapping quality.

* Indels can be easily detected by interpreting the
gapped alignment, and the accuracy do depend
greatly on the mapping.

 Using assembly to find SVs Is more accurate In
practice than using pair-end information.

» Depth of coverage was applied in CNV detection.

s

e
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Thanks!




